Polyol pathway and diabetic nephropathy revisited: Early tubular cell changes and glomerulopathy in diabetic mice overexpressing human aldose reductase

نویسندگان

  • Yasuhiro Hashimoto
  • Shin‐Ichiro Yamagishi
  • Hiroki Mizukami
  • Chihiro Yabe‐Nishimura
  • Sun Woo Lim
  • H Moo Kwon
  • Soroku Yagihashi
چکیده

UNLABELLED Aims/Introduction:  The polyol pathway has long been involved in the pathogenesis of diabetic nephropathy. It remains still unclear, however, how the polyol pathway is implicated in this process. We explored the effects of the enhanced polyol pathway on renocortical tubular cells and glomeruli in experimentally-induced diabetes. MATERIALS AND METHODS   Transgenic mice (Tg) overexpressing human aldose reductase were made diabetic by streptozotocin and followed for 8 weeks. Renocortical pathology, expressions of tonicity-responsive enhancer binding protein (TonEBP) and carboxymethyllysine of advanced glycation end-products, were examined. Wild-type non-transgenic mice (Wt) were also made diabetic and served as controls. RESULTS   Diabetic Tg showed augmented expression of TonEBP in renocortical tubular cells with vacuolated degenerative changes. These structural changes were associated with pronounced deposition of carboxymethyllysine. There was a significant increase in kidney weight, glomerular size, and mesangial area in diabetic animals and there was a trend for more severe changes in these measures in diabetic transgenic mice compared with those in control diabetic mice. Treatment with aldose reductase inhibitor significantly prevented polyol accumulation, mesangial expansion and expressions of TonEBP and carboxymethyllysine in diabetic Tg, but its effects on the renal structure were equivocal in control diabetic Wt. CONCLUSIONS   Our findings suggest that tubuloglomerular change might contribute to early diabetic nephropathy under the influence of the enhanced polyol pathway. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2010.00071.x, 2010).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Volume 2

abdominal obesity predictors of deterioration of glucose tolerance and effects of lifestyle intervention aimed at reducing visceral fat in normal glucose tolerance subjects with abdominal obesity, Akita 218–224 Abstracts from the 3rd Scientific Meeting of the Asian Association for the Study of Diabetes, 22–24 July 2011, Beijing, China Supplement 1, 1–106 adipocyte adipocytes as a vehicle for ex...

متن کامل

Effects of polyol pathway hyperactivity on protein kinase C activity, nociceptive peptide expression, and neuronal structure in dorsal root ganglia in diabetic mice.

We explored the specific impact of polyol pathway hyperactivity on dorsal root ganglia (DRG) using transgenic mice that overexpress human aldose reductase because DRG changes are crucial for the development of diabetic sensory neuropathy. Littermate mice served as controls. Half of the animals were made diabetic by streptozotocin injection and followed for 12 weeks. After diabetes onset, diabet...

متن کامل

The Polyol Pathway as a Mechanism for Diabetic Retinopathy: Attractive, Elusive, and Resilient

The polyol pathway is a two-step metabolic pathway in which glucose is reduced to sorbitol, which is then converted to fructose. It is one of the most attractive candidate mechanisms to explain, at least in part, the cellular toxicity of diabetic hyperglycemia because (i) it becomes active when intracellular glucose concentrations are elevated, (ii) the two enzymes are present in human tissues ...

متن کامل

Pathobiology of renal-specific oxidoreductase/myo-inositol oxygenase in diabetic nephropathy: its implications in tubulointerstitial fibrosis.

Renal-specific oxido-reductase/myoinositol oxygenase (RSOR/MIOX) is expressed in renal tubules. It catabolizes myo-inositol and its expression is increased in diabetic mice and in LLC-PK(1) cells under high-glucose ambience. Aldose reductase (AR) is another aldo-keto reductase that is expressed in renal tubules. It regulates the polyol pathway and plays an important role in glucose metabolism, ...

متن کامل

Aldose reductase-deficient mice are protected from delayed motor nerve conduction velocity, increased c-Jun NH2-terminal kinase activation, depletion of reduced glutathione, increased superoxide accumulation, and DNA damage.

The exaggerated flux through polyol pathway during diabetes is thought to be a major cause of lesions in the peripheral nerves. Here, we used aldose reductase (AR)-deficient (AR(-/-)) and AR inhibitor (ARI)-treated mice to further understand the in vivo role of polyol pathway in the pathogenesis of diabetic neuropathy. Under normal conditions, there were no obvious differences in the innervatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2011